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Governing Equations and Boundary 
Conditions

 The fluid is assumed to be incompressible
and inviscid，and the flow is irrotational.



On the free surface:

On the body surface:
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Fully nonlinear solution



Mesh Generation



Element types
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 The fluid domain is subdivided into many simple
zones, in which mesh may be generated more
easily. A multi-block mesh is then generated by
unifying all grids in the simple zones together;

 The numbers of nodes on the boundary of each
zone should be provided.

Multi-block structured meshes



Multi-block structured meshes…

Mesh 5

Mesh 1

Mesh 2

Mesh 3

Mesh 4

A multi-block mesh for a circular cylinder formed by 
combining five simple meshes together



Multi-block structured meshes…

Mesh for two circular cylinders (8-node quadrilateral element)

Mesh for four circular cylinders (8-node quadrilateral element)



Multi-block structured meshes…

Mesh for five floating semicircular cylinders (8-node quadrilateral element)

Mesh for eight floating rectangular cylinders (8-node quadrilateral element)



Multi-block Structured Meshes…

3D mesh for a twin Wigley ship (20-node brick element)



 Delaunay and tri-tree methods: only requires
boundary information including nodes and
element numbers.

Unstructured meshes

2D unstructured meshes



a) To improve the numerical stability;

b) To use 2-D smoothing techniques.

•Using hybrid mesh:

Unstructured meshes…



Unstructured Meshes…
(a)

(b)

(a) Unstructured mesh without smoothing; (b) Hybrid 
mesh with smoothing applied within structured mesh 
(Wu, Ma & Eatcok Taylor 1996, 21st ONR, Trondheim)



Unstructured meshes…

Seven truncated cylinders (6-node prism element)
(Wang & Wu, J.Fluids & Strus 2006)

Seven bottom-mounted cylinders (6-node prism element)



Finite Element Method
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The Galerkin method:

Discretised equation after using the Green’s identity:

Discretisation of equation
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 Direct method: the Gaussian elimination or
Cholesky method is employed to solve the
linear (sparse and) symmetric system and
Cuthill-McKee method to optimize bandwidth;

 Iterative method: the conjugate gradient
method with a symmetric successive over
relaxation (SSOR) preconditioner is used and
only nonzero elements in the stiffness matrix
are stored.

Solve the linear system



Calculate first-order (velocity) and 
second- order derivatives

 Method by differentiating the shape function;

 Difference method;

 Galerkin method (Global projection method).
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Method by differentiating the shape functions

(Wang, Wu & Drake, 2007, Ocean Eng.)



 Employ a cubic polynomial to express the velocity
potential along the vertical direction :(Ma, Wu &
Eatock Taylor 2001, Int.J. Nume. Meth. in Fluids)
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Galerkin method
(Wu & Eatock Taylor, App. Ocean Res 1994)
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Equation to Calculate the Force



dsngzF
bS

t 





 

 2

2
1 

0 1 2 3 4 5
Time

19

19.25

19.5

19.75

20

20.25

20.5

20.75

21

Fo
rc

e

The Force acting on the body

dsn
bS

t


 Problems with evaluation of : instability and
sawteeth behaviour



Evaluation of             :
(Wu, J. Fluids & Strucs. 1998)
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 To employ high order shape functions to calculate
the second order derivatives directly.

 To introduce auxiliary functions to avoid
calculating the second order derivatives.

Methods to handle the second order derivatives 
such as            in the moving boundary conditionn /
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in the fluid domain:

on the body surface:

on the free surface:

on other boundaries:

Introduce auxiliary functions

(Wu & Eatock Taylor 2003, Ocean Eng)
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For multiple structures, the force on i-th body:



Numerical Examples



 Comparison with experiment

 2-D floating bodies in forced motions ;

 2-D resonance problems (second order & fully 
nonlinear);

 2-D solitary wave problems;

 3-D sloshing problems .

Using structured mesh



The history of irregular wave  at x=3.436 for α=0.612 (Solid line: 
shorter tank L=14.64; Dash line: longer tank L=44.64; +: 
experimental data from Nestegard, 1999)

The history of irregular wave  at x=3.436 for α=0.749 (Solid line: 
shorter tank L=14.64; Dash line: longer tank L=44.64; +: 
experimental data from Nestegard, 1999)

Using structured mesh…

The history of irregular wave  at x=3.436 for α=0.612 (Solid line: 
shorter tank L=14.64; Dash line: longer tank L=44.64; +: 
experimental data from Nestegard, 1999)

The history of irregular wave  at x=3.436 for α=0.749 (Solid line: 
shorter tank L=14.64; Dash line: longer tank L=44.64; +: 
experimental data from Nestegard, 1999)

Using structured mesh…



Using structured mesh…

Wave profile at time 0.4s (a) Fully nonlinear result; (b) Experimental 
result (Retzler et al, 2000); (c) Linear result

Using structured mesh…

Wave profile at time 0.4s (a) Fully nonlinear result; (b) Experimental 
result (Retzler et al, 2000); (c) Linear result



Using structured mesh

tAX sin2-D floating bodies in vertical motions

Dimension of trapezoid-shape body 

d

b
 



Using structured mesh…

t=7T (A=0.4d,Ka=2) t=7.2T (A=0.4d,Ka=2)

t=7.4T (A=0.4d,Ka=2) t=7.6T (A=0.4d,Ka=2)

t=7.8T (A=0.4d,Ka=2) t=8T (A=0.4d,Ka=2)

snapshots of meshes for single cylinder at different time steps (α=75o)

 2-D floating bodies in forced motions tAX sin



Using structured mesh…

 2-D floating bodies in forced motions tAX sin
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 2-D second-order analysis in time domain: two rectangular cylinders 
in heave                      (Wang & Wu, 2008, Ocean Eng.)

Using structured mesh…

tAX sin

Comparison of waves at the right side of cylinder one at the first order
resonant frequency (a) A=0.0125d (b) A=0.025d (c) A=0.05d
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Using structured mesh…

Linear free surface profiles at the first order resonant frequency
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 2-D second-order analysis in time domain: two rectangular cylinders 
in heave                      (Wang & Wu, 2008, Ocean Eng.)tAX sin
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Using structured mesh…
 2-D second-order analysis in time domain: two rectangular cylinders 

in heave                      (Wang & Wu, 2008, Ocean Eng.)tAX sin



Using structured mesh…
 2-D fully nonlinear analysis : two rectangular 

cylinders in heave                       (A=0.0125d )                         tAX sin
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Using structured mesh…

Wave profiles at A=0.05d (at the first order resonant frequency)

 2-D fully nonlinear analysis : two rectangular 
cylinders in heave tAX sin



Using structured mesh…

Waves and forces at the second order resonant frequency
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 2-D fully nonlinear analysis : two rectangular 
cylinders in heave                      (A=0.2d)tAX sin



Using structured mesh…
 2-D fully nonlinear analysis : nine wedge-shaped 

cylinders in heave tAX sin
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Using structured mesh…
 2-D fully nonlinear analysis : nine wedge-shaped 

cylinders in heave tAX sin
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Using structured mesh…
 2-D fully nonlinear analysis : nine wedge-shaped 

cylinders in heave tAX sin

Wave profiles at t/T=45, 45.04, 45.08,…,47.32 atA=0.04d.

(at the first order resonant frequency )



Using structured mesh…
 2-D solitary wave problems

Finite element mesh for two solitary waves colliding 
with each other (8-node quadrilateral element)



Using structured mesh…

 2-D solitary wave problems

Wave profiles for two waves colliding with each other
(L=10Leff, H1=0.6h, xp1=3Leff, H2=0.2h, xp2=7Leff ,where Leff is 
the efficient wave length )



Using structured mesh…

 2-D solitary wave problems

Wave profiles for one wave overtaking another
(L=25Leff, H1=0.6h, xp1=3Leff, H2=0.2h xp2=5Leff )



Using structured mesh…

 2-D solitary wave problems

Wave profiles for a solitary wave propagates over a step
(a) without step (b) with step



Using structured mesh…

 2-D solitary wave problems
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(a solitary wave propagates over a step)



Using structured mesh…

 2-D solitary wave problems
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(Interactions of solitary waves with a floating rectangular cylinder)



Using structured mesh…

 2-D solitary wave problems
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Using structured mesh…
 3-D sloshing problems (Wu, Ma Eatock Taylor 1998, 

Applied Ocean Res)



Using structured mesh…

Snapshots of free surface in some cases

 3-D sloshing problems (Wu, Ma Eatock Taylor 1998, 
Applied Ocean Res)



 2-D wave-making problem;

 2-D wave radiation by floating wedged-shape bodies;

 2-D solit

 3-D large amplitude motions of vertical cylinders and 
motions of a floating FPSO;

 3-D wave-making problem for non-wall-sided cylinders;

 3-D second-order diffraction by multiple cylinders in the 
time domain;

 3-D wave-making problem for multiple cylinders;

 3-D wave radiation by multiple cylinders.;

Using unstructured mesh
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L

Sketch of a tank

Wave maker

Using unstructured mesh…

)/,/5539.1 ,sin( ghthgtAX  

 2-D wave-making problems (Wang & Wu 2006, J. Fluids 
& Strucs.)
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Using unstructured mesh…

 2-D wave-making problems (Wang & Wu, 2006)

Wave profile in the tank at =24.26 (A/h=0.1)



Using unstructured mesh…

Wave profile at τ=58.63 (a wedged-shape body in the tank)

 2-D wave-making problems (Wang & Wu, J. Fluids & 
Struc. 2006)



Using unstructured mesh…

 2-D wave radiation by floating wedged-shape bodies 
(Wang & Wu 2006, J. Fluids & Strus.)
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Sketch of a floating wedge
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Using unstructured mesh…

Single wedge )75,4.0,2( odA  

 2-D wave radiation by floating wedged-shape bodies 
(Wang & Wu 2006, J. Fluids & Strucs.)



Twin wedges )75,1.0,2( odA  

 2-D wave radiation by floating wedged-shape bodies 
(Wang & Wu 2006, J. Fluids & Strucs.)

Using unstructured mesh…



 3-D large motions of vertical cylinders (Wu & Hu, 2004,
Proc. Roy. Soc. London)

Wave profiles by two cylinders undergoing periodic oscillation 
at t=T, 2T, …, 6T

Using unstructured mesh…
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Time history of the displacement of the FPSO at A =0.01h

Wave profile around a FPSO

 Motions of a FPSO in a tank (Wu & Hu 2004, Proc. 
Roy. Soc. London)

Using unstructured mesh…
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 3-D wave-making problem for non-wall-sided cylinders 
(Wang, Wu & Drake, Ocean Eng. 2007)

Using unstructured mesh…



Using unstructured mesh…

Sketch of a 3-D tank
)sin,1416.0,7,72.0,12( tAXhrhLhBhL wc 

 3-D wave-making problem for non-wall-sided cylinders 
(Wang, Wu & Drake, Ocean Eng. 2007)



Using unstructured mesh…
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Comparison of wave histories for two bottom mounted cylinders at A/h=0.04
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 3-D wave-making problem for non-wall-sided cylinders 
(Wang, Wu & Drake, Ocean Eng. 2007)



Using unstructured mesh…

Free surface around the cylinder (α=75o)

 3-D wave-making problem for non-wall-sided cylinders 
(Wang, Wu & Drake, Ocean Eng. 2007)



Using unstructured mesh…
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 Four-cylinder cases at the second order trapped 
mode frequency (Wang & Wu 2006, J. Fluids & 
Strucs.)



Using unstructured mesh…

 Four-cylinder cases at the second order trapped 
mode frequency (Wang & Wu 2006, J. Fluids & Strucs.)
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Using unstructured mesh…

 Four-cylinder cases at the second order trapped 
mode frequency(Wang & Wu 2006, J. Fluids & Strucs.)
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Using unstructured mesh…

 Four-cylinder cases at the second order trapped 
mode frequency (Wang & Wu 2006, J. Fluids & Strucs.)

Wave profiles at t=16T
(a) linear;   (b) linear plus second order

(a)                                                          (b)



Using unstructured mesh…

 3-D wave-making problem for multiple cylinders (Wang 
& Wu 2010, Ocean Eng)

Sketch of the 3-D tank



Using unstructured mesh…

 3-D wave-making problem for multiple cylinders.

Wave profile at τ=127.8 and A=0.02h

(Seven cylinder cases , r=0.1416, B=20r, h=1.0, L=18)



Using unstructured mesh…
 3-D wave-making problem for multiple cylinders

is close to the trapped mode frequency15.2
(Seven cylinder cases, r=0.1416,B=20r, h=1.0,L=18)



Using unstructured mesh…
 3-D wave-making problem for multiple cylinders

(Seven cylinder cases, r=0.1416,B=20r, h=1.0,L=18)



Using unstructured mesh…
 3-D wave-making problem for multiple cylinders

(Seven cylinder cases, r=0.1416,B=20r, h=1.0,L=18)



Using unstructured mesh…
 3-D wave-making problem for multiple cylinders

The maximum force is on the middle cylinder (cylinder 4)

(Seven cylinder cases, r=0.1416,B=20r, h=1.0,L=18)



Using unstructured mesh…

 3-D wave-making problem for multiple cylinders

(Seven cylinder cases, r=0.1416, B=20r, h=1.0, L=18)



Using unstructured mesh…

 3-D wave-making problem for multiple cylinders (Wang & 
Wu 2010, Ocean Eng)

Wave profile at τ=137.63 and A=0.02h (                   )

is the trapped mode frequency1057.2

1057.2

(Eighteen cylinder cases, r=0.1416,B=20r)



Using unstructured mesh…

 3-D wave-making problem for multiple cylinders (Wang 
& Wu 2010, Ocean Eng)

(Eighteen cylinder cases, r=0.1416,B=20r)



Using unstructured mesh…

 3-D wave-making problem for multiple cylinders (Wang 
& Wu 2010, Ocean Eng)

(Eighteen cylinder cases, r=0.1416,B=20r)
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Using unstructured mesh…

 3-D wave radiation by multiple cylinders: two-cylinder 
cases in horizontal motions



Meshes around cylinders at t=8T, 8.2T, 8.4T, 8.6T, 8.8T, 9T 

tAX sin

)0.1,4,6.0,5.1,3(  kaaLaAadah cy

Using unstructured mesh…

 3-D wave radiation by multiple cylinders: four-cylinder 
cases in vertical motions



 The finite element method is efficient in simulations of
nonlinear wave-structure interactions;

 Both structured and unstructured meshes can be used in
the simulations. The former is more stable in the
simulation and the and the latter is more suitable for
complex domains;

 Enhanced interactions between multiple structures are
strong at the resonant or the nearly trapped mode
frequency.

 The waves and forces have strong nonlinear features at
the first and second order resonant or the nearly trapped
mode frequency.;

 Methods to calculate the velocity still need further study in
both 2-D and 3-D cases when using unstructured meshes.

 It is still a big challenge to use fully 3-D unstructured
meshes in fully nonlinear wave simulations.

Summary



References
• Wu, G.X. and Eatock Taylor, R. (1994) "Finite element analysis of two-dimensional 

non-linear transient water waves" Appl. Ocean Res.,. Vol.16, pp.363-372
• Wu, G.X. and Eatock Taylor, R. (1995) "Time stepping solutions of the two 

dimensional non-linear wave radiation problem" Ocean Engineering, Vo.22, 
pp785-798

• Wu, G.X. (1998) "Hydrodynamic force on a rigid body during impact with liquid", J. 
Fluids and Structures, Vol.12, pp.549-559 

• Wu, G.X., Ma, Q.W and Eatock Taylor, R. (1998) "Numerical simulation of 
sloshing waves in a 3D tank based on a finite element method", Appl. Ocean Res., 
Vol.20, pp.337-355

• Ma, Q.W., Wu, G.X. and Eatock Taylor, R. (2001a) "Finite element simulation of 
fully nonlinear interaction between vertical cylinders and steep waves- part 1: 
methodology and numerical procedure", Int. J. Nume. Meth. in Fluids, Vol.36, 
pp265-285

• Ma, Q.W., Wu, G.X. and Eatock Taylor, R. (2001b) "Finite element simulation of 
fully nonlinear interaction between vertical cylinders and steep waves- part 2: 
numerical results and validation", Int. J. Nume. Meth. in Fluids, Vol.36, 287-308



References
• Hu, P., Wu, G.X. and Ma. Q.W. (2002) “Numerical simulation of nonlinear wave 

radiation by a moving vertical cylinder” Ocean Eng., Vol.29, pp.1733-1750 
• Wu, G.X. and Eatock Taylor, R. (2003) “The coupled finite element and boundary 

element analysis of nonlinear interactions between waves and bodies” Ocean 
Eng. , Vol.30, pp. 387-400

• Wu, G.X. and Hu, Z.Z, (2004) “Simulation of nonlinear wave interactions between 
waves and floating bodies through a finite element based numerical tank”  Proc. 
Roy. Soc. London , Vol.A460, pp.2979-2817

• Wang, C.Z. and Wu, G.X. (2006) “An unstructured mesh based finite element 
simulation of wave interactions with non-wall-sided bodies”, J. Fluids & Structures, 
Vol.22, pp.441-461

• Wang, C.Z. and Wu, G.X. (2007) “Time domain analysis of second order wave 
diffraction by an array of vertical cylinders”, J. Fluids & Structures, Vol23, pp.605-
631



References
• Wang, C.Z., Wu, G.X. and Drake, K. (2007) “Interactions between nonlinear water 

waves and non-wall-sided 3D structures”,  Ocean Engineering, Vol.34, pp.1182-
1196

• Wu, G.X (2007) “Second order resonance of sloshing in a tank”, Ocean 
Engineering Vol.34, pp.2345-2349

• Wang, C.Z. and Wu, G.X. (2008) “Analysis of second order resonance in wave 
interactions with floating bodies through a finite element method”  Ocean 
Engineering, Vol.35, 717-726

• Eatock Taylor, R., Wu, G.X., Bai, W and Hu, Z.Z. (2008) “Numerical wave tanks 
based on finite element and boundary element modelling”,  J. of Offshore 
Mechanics and Arctic Engineering, ASME Vol.130, 03001(1)-03001(8)

• Wang, C.Z. and Wu, G.X., 2010，Interactions between fully nonlinear water 
waves and an array of cylinders in a wave tank, Ocean Engineering, Vol. 37, pp. 
400-417

• Wang, C.Z., Wu, G.X. and B.C. Khoo. (2011).” Fully nonlinear simulation of 
resonant motion of liquid confined between floating structures”, Computers and 
Fluids,Vol.44, pp89-101



References
• Wang, C.Z., Wu, G.X. (2011).”A brief summary of finite element method 

applications to nonlinear wave-structure interactions”, Journal of Marine Science 
and applications, Vol.10, pp127-138



Thank you! 
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