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Fig. Wave histories at (a) x=-2d and (b) x=-3d (Ka=2.0 and A/d=0.4)
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NOTE 3: FINITE ELEMENT METHOD

The physical concept of finite element method in fluid mechanics is different from that in
structural mechanics. In the latter case, a structure is divided into small elements. On each
element, the external force is balanced by the stress. In the former case, although the fluid is
also divided into small elements, the governing equations are not established by a similar
argument. The concept of the finite element method in this case is rather mathematical.

1. Governing equation

Let us consider a two dimensional case. We seek the solution of the following equations

Vig =0 . (

[
N’

in the fluid domain R and

d¢

—=Un,

on ‘ 2)

on the body surface Sp (the definitions of various parameters here are the same as in notes 1
and 2). The fluid domain can be divided into many elements with n nodes. The potential may
be written in terms of the finite element shape function Nij(x,y), or

¢, =Y 0N, (x,)
o €]

where ¢; are the nodal values of the potentials. Equation (3) is clearly an approximation as

indicated by the subscript a. It does not satisfy equations (1) and (2) exactly. The real task is
to find a set of ¢; so that the error is minimized for a given n.

Substituting equation (3) into (1), we have

Ideally, we wish that the error € would be zero. In practice, this is not possible. Thus, we
use the following equation

fR8(X,)f)Nde:O i=12,..,n | )
to make & as small as possibic. Substituting equation (4) into (5), we have

V2 N ( = - .
[;vomar=0 _ | ©

This equation can be further written as




_¢}m

99, SN - 99, IN, 3¢, N, |
dy ox dx dy oy

!

Applying Gauss's theorem (equation (1) of note 1) to the first two terms of the last equation,
we obtain

3
[0 0, ... 0
a(a MT(;-(

oo [ 19 90 1o il
U”an!.'(zl ]\/ dy N;'IZ}.JFQ“JR

We further use

de, _ a9, a9,

-, + -
on dx gy ”

and impose equation (2) on ¢,. The above equation becomes

96, IN, 96, IN
a i a { e Nd
IR{ > o dy }d‘q ULQ”X ds

)
Substituting equation (3) into (7), we have
n 8N N, 31\/ -
Yol o, 2 o, luz Ul nNds
pa R!_ dr ox dy dy | So 8)
In matrix form, this Becomes
[A]l¢]=[B] . 9)
where A is a square matrix with coefficients as
. JN; N, &N N,
A, j) = j [
x ox | oy 5y (102)
B is a column with coefficients as
Biy=U| n NdS ‘
( ) Jso X H N » 3 (IOb)

and ¢ 1s a column which contains the unknown ¢.

It is evident now that the remaining task is to calculate A and B for a given shape function
Nj and to solve equation (9).

2. Shape function




There are variety of choices of shape functions. As a demonstration, we choose the linear
shape function together with the triangular element (see figure 1a), which is defined as

N (x,y)=(a, +bx+c,y)/24 (11) |
where

4y = XY — XY, @y =X3Y) — X Y 3y = XY = X)) (12a)
bi=y,=ys by=y;—y b=y -y (12b)
€, =Xy~ X, O, =X, Gy =X, =X (12¢)

and 4 =(a ¢a2+a3)/’7 is the area of the element. It is easy tc confirm that the shape function
has the followmg properties :

NN (xy)=1 | |
j=i (13a)

4’N1<x,-,y,->=1 i=)
le(x,.,yt.)zO ] v (13b)

3 Local matrix and global matrix

One distinct feature of the finite element method is that the shape function discussed in .
equations (11) and (12) correspond locally to a particular element while equation (9) is in the
global system. The procedure to solve the problem is to consider element by element first.
The global matrix is then obtained by assembling the local results for each element.

We consider a singie element in figure 1a. Substituting equation (11) into (10a), we have
A, ) = j b, +cc,) 44 dR
— 2
= (bb, + ;) 44" [dR

where subscript 1 indicates that the coefficients correspond to element 1. The result of the .
integration in above equation is clearly the area of the element. Thus

A, j) = (bb; +cc;) 44 (14)

When there is only one element, the global matrix is the same the local matrix, or

}rAia,i) O ANL2) ANL3) ]
[Al=1 A1 A'(2,2) A'(2,3)
A'3,1) A'(3,2) A'(3,3) : (15)

We now add one more element into the problem as shown in figure 15. The numbers with
a circle correspond to the global system while those without correspond to the local system.

The giobal matrix becomes




[A'(LD) + A%(3,3) ANL2)+ A%(3,2) A'(1,3) A%(3,1) |
(A] A'(2,D)+ A*(2,3) A2, )+ A%2,2) AY2,3) A*(2,1)
A'(3,1) A'(3,2 A'(3,3) 0
2 2 2
| AN(1,3) A*(1L2) 0 A%(4,4) ] (i6)

4. KExercise

Find the global matrix when one more element is added into the problem (see figure i¢)

Figure la Figure 1b

Figure Ic
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